Blog: Is IoT just another buzzword

Is IoT just another buzzword?

Having spent too many years in the IT-business I have seen the coming and going of many promising technologies that prove to be… well not so promising after all. Or I should probably be more precise and say not so promising on the short run. It seems we sometimes forget that there is a certain lag before these new possibilities are utilized and that they depend on other technologies to evolve. Anyhow back to my headline – is IoT just another buzzword?

Well, surprisingly I believe not. I could bring tons of reports from analysts that back up my opinion, but that is sort of a pseudo argument. Instead I want to refer to an experience I had a few weeks ago where I attended a conference in Malmö called “Hardware Connected”. It is the sort of meet-up where the hardware based start-ups and established enterprises based in the greater Malmö/Lund area show-off their latest and greatest. On beforehand I was thinking that this should be a good proving ground for testing whether IoT were hype or reality.

Even to my surprise almost all products were IoT focused. To give you some examples:

  • Products for precision farming and grounds care by Sensefarm
  • Prototype IoT systems from Arduino and DeviceRadio
  • Several enterprise IoT systems on chip: e.g. from Cypress, Mistbase and uBlocks
  • Smart home appliances ranging from windows control systems to control of power consumption: e.g. Animus Home, E.ON, EWA , Optifuse, ensative, Tryggel
  • Smart sensor for food security by Innoscentia

 

For me that was a real proof that IoT is not just another buzzword made up by analysts and marketing professionals. IoT is already a reality and I think a small meet-up in Malmoe is actually a very good indication on that the way we interact with technology and optimize our use of resources is going to change. Exciting times.

More information
Managing Partner, Jakob Appel, jakob.appel@glaze.dk, +45 26 17 18 58

Positioning technologies currently applied across industries:

Global Navigational Satellite System: Outdoor positioning requires line-of-sight to satellites, e.g. GPS: the tracking device calculates its position from 4 satellites’ timing signals then transmits to receiving network
–    via local data network, e.g. wifi, proprietary Wide Area Network
–    via public/global data network, e.g. 3G/4G

Active RFID: A local wireless positioning infrastructure built on premises indoor or outdoor calculates the position based on Time of Flight from emitted signal & ID from the tracking device to at least 3 receivers or when passing through a portal. The network is operating in frequency areas such as 2.4 GHz WiFi, 868 MHz, 3.7 GHz (UWB – Ultra Wide Band), the former integrating with existing data network, the latter promising an impressive 0.3 m accuracy. Tracking devices are battery powered.

Passive RFID: Proximity tracking devices are passive tags detected and identified by a reader within close range. Example: Price tags with built-in RFID will set off an alarm if leaving the store. Numerous proprietary systems are on the market. NFC (Near Field Communications) signifies a system where the reader performs the identification by almost touching the tag.

Beacons: Bluetooth Low Energy (BLE) signals sent from a fixed position to a mobile device, which then roughly calculates its proximity based on the fading of the signal strength. For robotic vacuum cleaners an infrared light beacon can be used to guide the vehicle towards the charging station.

Dead Reckoning: Measure via incremental counting of driving wheels’ rotation and steering wheel’s angle. Small variations in sizes of wheel or slip of the surface may introduce an accumulated error, hence this method is often combined with other systems for obtaining an exact re-positioning reset.

Scan and draw map: Laser beam reflections are measured and used for calculating the perimeter of a room and objects. Used for instance when positioning fork-lifts in storage facilities.

Visual recognition: The most advanced degree of vision is required in fully autonomous vehicles using Laser/Radar (Lidar) for recognition of all kinds of object and obstructions. A much simpler method can be used for calculating a position indoor tracking printed 2D barcodes placed at regular intervals in a matrix across the ceiling. An upwards facing camera identifies each pattern and the skewed projection of the viewed angle.

Inertia: A relative movement detection likewise classical gyroscopes in aircrafts now miniaturised to be contained on a chip. From a known starting position and velocity this method measures acceleration as well as rotation in all 3 dimensions which describes any change in movement.

Magnetic field: a digital compass (on chip) can identify the orientation provided no other magnetic signals are causing distortion.

Mix and Improve: Multiple of the listed technologies supplement each other, well-proven or novel, each contributing to precision and robustness of the system. Set a fixpoint via portals or a visual reference to reset dead reckoning & relative movement; supplement satellite signal with known fixpoint: “real time kinematics” refines GPS accuracy to mere centimetres; combine Dead Reckoning and visual recognition of 2D barcodes in the ceiling.

LoRaWAN: A low power wide area network with wide reach. An open standard that runs at unlicensed frequencies, where you establish a network with gateways.

Sigfox: A low power wide area network reminiscent of LoRa. Offered in Denmark by IoT Danmark, which operates the nationwide network that integrates seamlessly to other national Sigfox networks in the world.

NFC: Used especially for wireless cash payments.

Zigbee: Used especially for home automation in smart homes, for example. lighting control.

NB-IoT: Telecommunications companies’ IoT standard. A low-frequency version of the LTE network.

2-3-4G Network: Millions of devices are connected to a small SIM card, which runs primarily over 2G, but also 3G and 4G.

Wifi: The most established standard, especially used for short-range networks, for example. in production facilities.

CATM1: A low power wide area network, especially used in the United States.