Enterprise IoT-Cloud seminar

Kom og hør hvordan førende skandinaviske firmaer har håndteret Enterprise IoT-Cloud udrulninger.
D. 24. november inviterer vi nemlig til formiddagsseminar hvor vi gennemgår konkrete erfaringer med design af Enterprise IoT-Cloud løsninger på Microsoft Azure. Der vil også være inspiration til konkrete anvendelser og nye forretningsmodeller, samt præsentation af Microsofts Azure roadmap.

Vi oplever at mange virksomheder gerne vil i gang med IoT-pilotprojekter og at designet af en Enterprise IoT-arkitektur ofte er en hæmsko for at komme i gang. Seminaret tager derfor udgangspunkt i konkrete erfaringer fra nogle af Skandinaviens mest omfattende Microsoft Azure IoT-udrulninger, fra design til drift, og vi stiller skarpt på ”dos and don'ts” når I skal designe en Enterprise IoT-Cloud platform. Vi tager udgangspunkt i Microsoft Azure, men der vil også være generelle pointer som vil være relevante ift. andre cloud platforme.

Program:

08.30-09.00 Registrering med morgenkaffe og brød
09.00-09.10 Velkommen
09.10-09.45 "Show me the money" - hvordan skal danske virksomheder tjene penge på IoT?
09.45-10.15 Design og implementation af en Azure Enterprise IoT-Cloud platform.
10.15-10.35 Lessons learned: Hvordan har E.ON implementeret deres Azure IoT platform?
10.35-10.45 Pause
10.45-11.30 Hvordan ser roadmappen ud for Azure? Showcase af spændende features.
11.30-11.50 Sandwiches to-go og få en snak med andre deltagere

Om oplægsholderne
Fredrik Svensson, Glaze: Arkitekt, forretningsudvikler og projektleder med +20 års erfaring inden for udvikling af intelligente og connected devices.

Jesper Meulengracht, Glaze: Rådgiver, forretningsudvikler og change manager som de seneste 6 år har arbejdet med Internet-of-Things.

David Bojsen, Microsoft: Cloud Solution Architect, IoT, Advanced Analytics & AI

Praktisk info:

Dato: 24/11-2017

Sted: Microsoft, Kanalvej 7, 2800 Kongens Lyngby

Tilmelding:

Dit navn

Virksomhed

Din stilling

Din e-mail

Evt. navne på andre der skal tilmeldes

Positioning technologies currently applied across industries:

Global Navigational Satellite System: Outdoor positioning requires line-of-sight to satellites, e.g. GPS: the tracking device calculates its position from 4 satellites’ timing signals then transmits to receiving network
–    via local data network, e.g. wifi, proprietary Wide Area Network
–    via public/global data network, e.g. 3G/4G

Active RFID: A local wireless positioning infrastructure built on premises indoor or outdoor calculates the position based on Time of Flight from emitted signal & ID from the tracking device to at least 3 receivers or when passing through a portal. The network is operating in frequency areas such as 2.4 GHz WiFi, 868 MHz, 3.7 GHz (UWB – Ultra Wide Band), the former integrating with existing data network, the latter promising an impressive 0.3 m accuracy. Tracking devices are battery powered.

Passive RFID: Proximity tracking devices are passive tags detected and identified by a reader within close range. Example: Price tags with built-in RFID will set off an alarm if leaving the store. Numerous proprietary systems are on the market. NFC (Near Field Communications) signifies a system where the reader performs the identification by almost touching the tag.

Beacons: Bluetooth Low Energy (BLE) signals sent from a fixed position to a mobile device, which then roughly calculates its proximity based on the fading of the signal strength. For robotic vacuum cleaners an infrared light beacon can be used to guide the vehicle towards the charging station.

Dead Reckoning: Measure via incremental counting of driving wheels’ rotation and steering wheel’s angle. Small variations in sizes of wheel or slip of the surface may introduce an accumulated error, hence this method is often combined with other systems for obtaining an exact re-positioning reset.

Scan and draw map: Laser beam reflections are measured and used for calculating the perimeter of a room and objects. Used for instance when positioning fork-lifts in storage facilities.

Visual recognition: The most advanced degree of vision is required in fully autonomous vehicles using Laser/Radar (Lidar) for recognition of all kinds of object and obstructions. A much simpler method can be used for calculating a position indoor tracking printed 2D barcodes placed at regular intervals in a matrix across the ceiling. An upwards facing camera identifies each pattern and the skewed projection of the viewed angle.

Inertia: A relative movement detection likewise classical gyroscopes in aircrafts now miniaturised to be contained on a chip. From a known starting position and velocity this method measures acceleration as well as rotation in all 3 dimensions which describes any change in movement.

Magnetic field: a digital compass (on chip) can identify the orientation provided no other magnetic signals are causing distortion.

Mix and Improve: Multiple of the listed technologies supplement each other, well-proven or novel, each contributing to precision and robustness of the system. Set a fixpoint via portals or a visual reference to reset dead reckoning & relative movement; supplement satellite signal with known fixpoint: “real time kinematics” refines GPS accuracy to mere centimetres; combine Dead Reckoning and visual recognition of 2D barcodes in the ceiling.